Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jing-Min Shi,* Hai-Yan Xu and Lian-Dong Liu

Department of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China

Correspondence e-mail:
shijingmin@beelink.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.069$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Diaquabis(3-hydroxypyridine N-oxide)dithiocyanatocobalt(II)

In the title mononuclear complex, $\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$], the six-coordinated $\mathrm{Co}^{\mathrm{II}}$ atom lies on an inversion center. In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ $(\mathrm{H} \cdots \mathrm{O}=1.85-2.01 \AA)$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}(\mathrm{H} \cdots \mathrm{S}=2.40 \AA)$ hydrogen bonds link molecules into a three-dimensional network.

Comment

We have recently determined the structures of two complexes which are related to the title compound, namely $\left[\mathrm{Cu}_{2}\left(\mu_{1,3^{-}}\right.\right.$ $\left.\mathrm{SCN})_{2}\left(\mu_{1,3}^{\prime}-\mathrm{SCN}\right)_{2}(\mathrm{MPyO})_{2}\right]_{n}$ (where MPyO $=4$-methylpyridine N-oxide) (Shi et al., 2006) and diaquadiisothiocyanatobis(pyridine N-oxide)cobalt(II) (Shi et al., 2005). In the title molecular structure (Fig. 1), the $\mathrm{Co}^{\mathrm{II}}$ atom is located on a crystallographic inversion center, and is in a slightly disorted octahedral $\mathrm{CoN}_{2} \mathrm{O}_{4}$ coordination geometry (Table 1).

In the crystal structure, intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

Experimental

An aqueous solution (5 ml) of 3-hydroxypyridine N-oxide (0.1556 g , 1.40 mmol) was added to an aqueous solution (15 ml) of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.2617 \mathrm{~g}, 0.715 \mathrm{mmol})$ and $\mathrm{NaNCS}(0.1156 \mathrm{~g}$, 1.43 mmol), and the mixture was stirred for a few minutes. Light-red single crystals were obtained after the solution was allowed to stand at room temperature for two weeks. The infrared spectrum reveals that there is a strong peak at $2110 \mathrm{~cm}^{-1}$ for the vibration of the thiocyanate ligand, and peaks at 1615 and $1592 \mathrm{~cm}^{-1}$ for the vibrations of pyridine ring.

Crystal data

$\left[\mathrm{Co}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$	$Z=2$
$M_{r}=433.32$	$D_{x}=1.595 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / c$	Mo $K \alpha$ radiation
$a=5.3123(10) \AA$	$\mu=1.22 \mathrm{~mm}^{-1}$
$b=14.199(3) \AA$	$T=298(2) \mathrm{K}$
$c=12.063(2) \AA$	Prism, red
$\beta=97.347(2)^{\circ}$	$0.45 \times 0.21 \times 0.18 \mathrm{~mm}$
$V=902.4(3) \AA^{3}$	

Received 6 June 2006

Data collection

Bruker SMART APEX CCD diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.610, T_{\text {max }}=0.811$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.069$
$S=1.04$
1773 reflections
117 parameters
H -atom parameters constrained

4829 measured reflections
1773 independent reflections 1607 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0337 P)^{2}\right. \\
& +0.1913 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.007 \text { 。 } \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0067 \text { (17) }
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Co} 1-\mathrm{O} 1$	$2.0675(12)$	$\mathrm{Co} 1-\mathrm{O} 3$	$2.1148(12)$
$\mathrm{C} 01-\mathrm{N} 2$	$2.0829(15)$		
$\mathrm{O}^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{O} 1$	180	$\mathrm{~N} 2-\mathrm{Co} 1-\mathrm{O} 3$	$89.76(5)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.54(6)$	$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O3}^{\mathrm{i}}$	$90.50(5)$
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	$88.46(6)$	$\mathrm{N} 2-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	$90.24(5)$
$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Co} 1-\mathrm{N} 2$	180	$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O}^{\mathrm{i}}$	180
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 3$	$89.50(5)$		

Symmetry code: (i) $-x+1,-y+1,-z$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 6 \cdots \mathrm{O} 1^{\text {ii }}$	0.84	1.85	2.6845 (18)	172
$\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{O} 2^{\text {iii }}$	0.84	2.01	2.8393 (19)	170
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{~S} 1^{\text {iv }}$	0.82	2.40	3.2025 (18)	165
Symmetry codes $x+1,-y+\frac{3}{2}, z+\frac{1}{2}$.	(ii) $-x,-y+1,-z$;		$\begin{equation*} -x+1, y-\frac{1}{2},-z+\frac{1}{2} \tag{iv} \end{equation*}$	

The H atoms of the coordinated $\mathrm{H}_{2} \mathrm{O}$ molecules were located in a difference Fourier, but were subsequently refined in a riding-model

Figure 1
The molecular structure of (I), showing the atom-numbering scheme with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (i) $-x+1,-y+1,-z]$.
approximation with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$. All other H atoms were placed in calculated positions and refined in a riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $\mathrm{O}-\mathrm{H}=$ $0.82 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ for the hydroxyl H atom.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of Shandong Province of China (Grant No. Y2005B25).

References

Bruker (1997). SMART (Version 5.6) and SAINT (Version 5.A06), Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Version 2.10. University of Göttingen, Germany.
Shi, J. M., Liu, Z., Lu, J. J. \& Liu, L. D. (2005). Acta Cryst. E61, m1133-m1134.
Shi, J. M., Sun, Y. M., Liu, Z., Liu, L. D., Shi, W. \& Cheng, P. (2006). Dalton Trans. pp. 376-380.

